Visual Aids & Diagrams - AI Concepts Visualized
Updated: October 28, 2025

See AI, Understand AI
Sometimes a picture really is worth a thousand words. This chapter turns complex AI concepts into simple visual diagrams you'll never forget.
๐ง Neural Network Architecture
Simple Neural Network:
INPUT LAYER HIDDEN LAYER OUTPUT LAYER
(3) (4) (2)
โ โโโโโโโโโโโโโโโฌโโโโ โ โโโโโโโโโโโโโฌโโโโ โ
โ โ โ
โ โโโโโโโโฌโโโโโโโโผโโโโโ โ โโโโโฌโโโโโโโดโโโโ โ
โ โ โ โ
โ โโโโโโโโดโโโโโโโโดโโโโโ โ โโโโโค
โ โ
โ โโโโโโ
Input: Image pixels Process: Pattern detection Output: Cat/Dog๐ก Hover to Learn: Each circle is a "neuron" that processes information. Lines are connections that pass data forward through the network.
Deep Neural Network:
INPUT HIDDENโ HIDDENโ HIDDENโ OUTPUT
โ โ โ โ โ
โฑโโฒ โฑโโฒ โฑโโฒ โฑโโฒ โฑโโฒ
โ โ โ โ โ โ โ โ โ โ โ โ โ โ
โฒโโฑ โฒโโฑ โฒโโฑ โฒโโฑ โฒโโฑ
โ โ โ โ โ
โฑโโฒ โฑโโฒ โฑโโฒ โฑโโฒ โ
โ โ โ โ โ โ โ โ โ โ โ โ โ
Raw Data โ Features โ Concepts โ Abstract โ Decision๐ Deep Learning: Multiple hidden layers allow the network to learn increasingly abstract concepts - edges โ shapes โ objects โ meanings.
๐ฎ Transformer Attention Mechanism
Self-Attention Visualization:
Sentence: "The cat sat on the mat"
ATTENTION MATRIX:
The cat sat on the mat
The โโโ โโโ โโโ โโโ โโโ โโโ
cat โโโ โโโ โโโ โโโ โโโ โโโ
sat โโโ โโโ โโโ โโโ โโโ โโโ
on โโโ โโโ โโโ โโโ โโโ โโโ
the โโโ โโโ โโโ โโโ โโโ โโโ
mat โโโ โโโ โโโ โโโ โโโ โโโ
โโโ = Strong attention (0.8-1.0)
โโโ = Medium attention (0.4-0.7)
โโโ = Weak attention (0.0-0.3)๐ฏ How It Works: The AI determines which words to "pay attention to" when understanding each word. "mat" pays attention to "on" because they're related!
๐ AI Learning Process Flowchart
โโโโโโโโโโโโโโโ
โ Random Init โ
โโโโโโโโฌโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโ โโโโโโโโโโโโ
โ Training โโโโโโถโ Make โ
โ Data โ โPredictionโ
โโโโโโโโโโโโโโโ โโโโโโฌโโโโโโ
โ
โผ
โโโโโโโโโโโโโ
โCalculate โ
โ Error โ
โโโโโโโฌโโโโโโ
โ
โ Error < Goal? โ
โฑ โฒ
NO YES
โ โ
โผ โผ
โโโโโโโโโโโโ โโโโโโโโโโโโ
โ Adjust โ โ Model โ
โ Weights โ โ Complete โ
โโโโโโฌโโโโโโ โโโโโโโโโโโโ
โ
โโโโโโโโโโโ
โ
[REPEAT]โป๏ธ The Learning Loop: AI learns through repetition - make prediction โ measure error โ adjust โ repeat until accurate.
๐ Model Size Comparison Chart
Parameters, Speed & Cost:
MODEL SIZE COMPARISON (Parameters & Performance)
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
GPT-2 โโโโโโโโโโโโโโโโโโโโโโ 124M | Speed: โโโโโโโโโโโโ
โ Basic text generation | Cost: FREE
Llama-7B โโโโโโโโโโโโโโโโโโโโโโ 7B | Speed: โโโโโโโโโโโโ
โ Good all-around | Cost: $
Llama-13Bโโโโโโโโโโโโโโโโโโโโโโ 13B | Speed: โโโโโโโโโโโโ
โ Professional quality | Cost: $$
GPT-3.5 โโโโโโโโโโโโโโโโโโโโโโ 175B | Speed: โโโโโโโโโโโโ
โ Cloud only | Cost: $$$
GPT-4 โโโโโโโโโโโโโโโโโโโโโโ 1T+ | Speed: โโโโโโโโโโโโ
โ State of the art | Cost: $$$$
Parameters: โโโโ = Billions
Speed: โโโโ = Tokens/second
Cost: $ = Relative expenseMore Parameters
= Better quality responses
More Parameters
= Slower generation
More Parameters
= Higher costs
๐ณ Decision Tree: Choose Your AI Tool
What's Your Task?
โ
โโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโ
โ โ โ
Writing Coding Analysis
โ โ โ
โโโโโโดโโโโโ โโโโโโดโโโโโ โโโโโโดโโโโโ
โ โ โ โ โ โ
Simple Complex Debug Create Data Research
โ โ โ โ โ โ
Claude GPT-4 Copilot CodeLlama Local Claude
7B
QUICK REFERENCE:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Task | Best Tool | Why
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Email | Claude | Natural writing
Blog Post | GPT-4 | Creative + SEO
Code Debug | Copilot | IDE integration
New Project | CodeLlama | Privacy + free
Data Analysis | Local 7B | Process locally
Research | Claude | Long context๐ฐ Cost vs Performance Matrix
COST VS PERFORMANCE ANALYSIS
High โ โ GPT-4
โ (Best but $$$)
P โ โ Claude Pro
E โ (Balanced)
R โ
F โ โ Llama-70B
O โ (Local Pro)
R โ โ GPT-3.5
M โ (Good value)
A โ
N โ โ Llama-13B
C โ (Local sweet spot)
E โ
โ โ Llama-7B
โ (Free local)
Low โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Free $10 $20 $100 $500+
COST/MONTH๐ฏ Sweet Spot: For most users, Llama-13B local or GPT-3.5 cloud offers the best balance of quality and cost.
๐ป Hardware Requirements Visual
HARDWARE REQUIREMENTS BY MODEL SIZE
Model Size RAM Needed GPU VRAM Speed
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
3B Model: [โโโโโโโโโโ] 4GB โโโโโโโโโโ
8GB Min
7B Model: [โโโโโโโโโโ] 8GB โโโโโโโโโโ
16GB Min
13B Model: [โโโโโโโโโโ] 16GB โโโโโโโโโโ
32GB Rec
30B Model: [โโโโโโโโโโ] 24GB โโโโโโโโโโ
64GB Rec
70B Model: [โโโโโโโโโโ] 48GB โโโโโโโโโโ
128GB Min
โ = Required
โ = Headroom recommended๐ป Most Laptops Can Run:
3B-7B models comfortably
๐ฅ๏ธ Gaming PC Recommended:
13B+ models for best results
๐บ๏ธ Learning Path Roadmap
YOUR AI LEARNING JOURNEY
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
START โ [Week 1-2: Basics]
โ
โโโโ Read Guide
โโโโ Try ChatGPT
โโโโ Join Community
โ
โผ
[Week 3-4: Hands-On]
โ
โโโโ Install Local AI
โโโโ Compare Models
โโโโ First Project
โ
โผ
[Month 2: Specialization]
โ
โโโโโโผโโโโโฌโโโโโโโโโ
โ โ โ โ
Writer Coder Analyst Researcher
โ โ โ โ
โผ โผ โผ โผ
[Content] [Apps] [Data] [Papers]
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Time Investment: 1-2 hours/day
Cost: $0-20/month
Outcome: AI Proficiency๐ You Are Here: By reading this guide, you're already well into Week 1-2. Next step: hands-on practice!
โ๏ธ Prompt Engineering Visual Guide
Prompt Anatomy:
SYSTEM PROMPT
"You are an expert chef..."
โ Sets role/persona
CONTEXT
"Given these ingredients..."
โ Provides background
TASK
"Create a 3-course meal..."
โ What to do
CONSTRAINTS
"Under $20, vegetarian..."
โ Sets limits
FORMAT
"List as: 1. 2. 3. ..."
โ Output style
๐ Quick Visual Glossary
VISUAL AI TERMS
Token: [Hello] โ [Hel][lo] โ [42][867]
Word Pieces Numbers
Embedding: Cat โ [0.2, 0.8, 0.1, ...]
Word Vector in space
Layer: โโโ โ โโโ โ โโโ
Input Process Output
Epoch: Dataset โ Model โ Dataset โ Model
Pass 1 Pass 2
Gradient: โฒ High error
โฑโฒ
โฑ โฒ Adjust
โฑ โฒ
โฑ โผ Low error
Temperature: Low(0.1): "The sky is blue"
High(1.0): "The sky is azure/cobalt/infinite"Key Takeaways
- โVisual diagrams make complex concepts simple - a picture truly is worth 1000 words
- โNeural networks are layers of connected neurons - each layer learns increasingly abstract patterns
- โAttention mechanisms show word relationships - transformers know which words matter most
- โAI learning is an iterative loop - predict, measure error, adjust, repeat
- โBigger models = better quality but slower & more expensive - choose based on your needs
- โHardware requirements scale with model size - most laptops can run 7B models
- โGood prompts have 5 parts - role, context, task, constraints, format
"Understanding the architecture makes you a better AI user. These visuals are your mental models."
Chapter Information
Academic Details
- Learning Objectives: Master AI concepts through visual learning and diagrammatic understanding
- Difficulty Level: Intermediate
- Prerequisites: Basic understanding of AI and neural networks
- Time Investment: 15 minutes reading + 20 minutes practice
Sources & Citations
- Visual Research: Neural network visualization studies, cognitive learning research
- Architecture Sources: Original research papers, technical documentation
- Educational Design: Visual learning theory, information design principles
- Last Updated: October 2024
External Resources & Tools
Visualization Tools
- Mermaid.jsText-based diagram generation
- TensorBoardMachine learning visualization toolkit
- GAN LabInteractive GAN visualization
Learning Resources
- Distill.pubInteractive ML research articles
- Neural Networks from ScratchVisual neural network guide
- Illustrated TransformerVisual transformer architecture guide
Ready for Hands-On Practice?
You've seen how AI works visually. Now it's time to practice with interactive exercises and quizzes!
Chapter 17: Interactive Exercises โ